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OUTER PLANET MISSION GUIDANCE AND NAVIGATION

FOR SPINNING SPACECRAFT*

Charles Kendall Paul™®
Robert Kent Russell™®
Jordan Ellis™**

Jet Propulsion Laboratory

Pasadena, California

Abstract

The orbit determination accuracies, maneuver results, and navigation
system specification for three spinning Pioneer planetary probe missions are
analyzed to aid in determining the feasibility of deploying probes into the
atmospheres of the outer planets. Radio-only navigation suffices for a direct
Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn
ephemeris errors(1000 km) plus rigid entry constraints at Uranus result
in very high velocity requirements (140 m/sec) on the final legs of the Saturn/
Uranus and Jupiter/Uranus missions if Earth-based tracking only is employed.
The capabilities of a conceptual V-slit sensor are assessed to supplement
radio tracking by star/satellite observations. By processing the optical
measurements with a batch filter, entry conditions at Uranus can be con-
trolled to acceptable mission-defined levels (+3°) and the Saturn-Uranus
leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/

sec) if nominal specified accuracies of the sensor can be realized,

T’l‘his research was sponsored by NASA Contract NAS 7-100 and conducted
at the Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, California,

*Senior Research Engineer

**Member of the Technical Staff
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Glossary

B probe miss distance in planetary radii
C3 twice the injection kinetic energy per unit mass
R radius at separation in planetary radii
rp bus/probe periapsis radius in planetary radii
RA right ascension of Vm vector
T time before probe vacuum periapsis, in hours
v, hyperbolic excess velocity in km/sec
5 declination of Vm vector

AV (along) separation velocity component along Earth-line, m/sec
AV (normal) separation velocity component normal to Earth-line,
m/sec
Ye entry flight path angle in degrees

®im B-plane aim angle in degrees

Methodology and Approach

The Missions

The missions analyzed in this study are: (1) a 1979 direct Saturn,
(2) a 1980 Saturn/Uranus, and (3) a 1980 Jupiter/Uranus. Table 1 lists the
specific nominal trajectory characteristics of the missions., In general, all
three missions can be characterized by: (1) high launch energies
(C3 = 130 kmz/secz), (2) spacecraft launch mass of 475 kg, (3) spinning
Pioneer-type spacecraft consisting of a bus and a probe for planetary entry,
and (4) Titan IIIE/Centaur/TE-364-4 launch vehicle,

The planetary entry aiming strategy is the deflected bus mode in which
the probe/bus configuration is aimed for planetary entry and a velocity
impulse (on the order of 100 m/sec) is imparted to the bus at several hundred

planetary radii before probe entry totargetthe bus for a planetary flyby., The
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bus serves as a communications link between Earth tracking stations and the
probe as the probe descends into the plinetary atmosphere measuring
indigenous environmental elements, (Ref. 1)

Navigation

Navigation problems which plague inner planet missions also exist for
outer planet missions, although many of these problems such as poor solar
radiation pressure modeling are insignificant compared to spacecraft state
perturbatici's mapped over large distances, Fo: example, errors in
modeling the very small time-varying attitude control leakages on board the
spacecraft may lead to a corruption of the filtered state estimate which
becomes greater as mission duration increases. In addition, 2rrors in the
locations of the Earth-based tracking stations, although small, zontribute
errors to the state estimate which vary directly as the distance to the Earth.
The problem of low declination trajectories can affect all classes of planetary
missions using conventional radio range and range-rate data. It is more
severe for the outer planets since the declination rate is so much lower and
if the spacecraft is already in a low declination, it tends to stay there
for a long time. To round out this picture, the planc. ephemeris a;nd mass
errors are far more significant on the distant outer planet missions.
Essential to precise planetary navigation involving flybys and entry probes,
of course, is the knowledge of the planet's position and its mass.

To provide precise navigation capability for an outer-planet mission
with its attendant difficulties, appropriate data types must be used so as to
minimize the effect of the above error sources., Ondrasik and Rourke have
shown (Ref. 2) that differenced, near-simultaneous range and range-rate data,

(QVLBI), when used in conjunction with deweighted, conventional range and

S, Y

B



range-rate’ data, can be of great utilﬁty in resolving the difficulties of both
low-declination and process noise (attitude control forces), The reason for
deweighting of the conventional range and range rate data is the high
sensitivity of these data types to process noise (unmodelled acceleraticns).
The assumptions embodied in the radio navigation analysis are:
1. The data types are range (deweighted standard deviation of
10 km noise} range rate (deweighted std. dev. of 100 mm/sec noise), differ-
enced range (std. dev, of 8.4 m noise), and differenced range rate (std. dev.

of 2.8 mm/sec. noise).

2. The data rates assumed are one point/min for range rate and one
point/6 hr for range. For simultaneous data, the differenced range rate data
is assumed taken at 1 point/min where stations o#erlap. For differenced
range data, only two-station overlap is considered for the three DSN (Dezep
Space Network) stations, with the station cycle repeating every third day.

3. The data are assumed to begin at S - 80 days (8C days before
probe periapsis at Saturn) for the direct Saturn mission and at E (Encounter)
~120, E-90, and E - 60 days for Saturn and Jupiter on the SU and JU
missions., The data are assumed to begin at U - 120 days at Uranus for both
the SU and JU missions and end at bus/probe separation. The different
tracking intervals at Saturn and Jupiter are employed in the analysis so as
to examine filter performance with varying data arcs.

4. The data filter is a minimum variance batch filter, The evaluation,
however, is performed in a batch-sequential mode with a two-day batch
interval, This type of evaluation allows for an examination of the effects of
a stochastic (first-order Markov process) consider parameter on the true

filter performance.
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5. Six spacecraft position components, six planet ephemeris elements,
one planet mass, and one constant solar acceleration component are included
in the solution state.

6. "Consider' state parameters affec.ingthe estimate but not estimated
themselves are nine Earth station locations and one solar stochastic accelera-
tion component.

7. A priori spacecraft solution state errors are assumed to be

106

km for the three position components and 1 km/sec for the three velocity
components. The planet ephemeris errors are taken as the full 6 x 6 covari-
ance on the Brouwer and Clemence SetIIl elements. Position error magnitudes
are 400 km for Jupiter, 1000 km for Saturn, and 10,000 km for Uranus. Planet
mass errors are taken as 2,000, 40,000, and 80,000 km3/sec2 for Jupiter,
Saturn and Uranus, respectively, The spacecraft constant radial acceleration

-12 km/secz.

error due tc gar leakage is taken to be 10

8. The a priori consider state errors consist of station location
errors and a stochastic radial acceleration. The station location errors
are parameterized as "tight" and "loose" levels reflecting the type of
calibration available to establish and maintain equivalent station locations.
The "tight" spin radius error is 1 m, the longitude error .is 2 m, and the
height above equator error is 15 m. The corresponding errors for the
"loose" calibration are 3, 5, and 15 m, respectively., The correlation
factor between station longitudes is 0.9. The stochastic radial acceleration
is treated as a first order Markov process with a standard deviation of

-2 km/secz, and a correlation time of 5 days,

10
Radio data types, as necessary and precise as they are, are not
particularly effective in resolving the problems posed by the ephemeris

errors during planetary approach, Duxbury (Ref. 3) has shown, however,

that an on-board optical sensing system, capable of observing outer planet
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satellites relative to the celestial sphere, is quite able to reduce the problem
of ephemeris errors significantly., As a result, both on-board optical and
Earth-based radio (differenced and conventional range and range-rate) data
types were employed in this study. Inasmuch as the vehicle is a Pioneer-class
spacecraft (i,e,, spin-stabilized), the optiLal system will be of a different
type than that used on the Mariner-class (three-axis stabilized) spacecraft,
the latter being basically a television imaging system. What is being
considered and will be studied here is called a V-slit sensor, depicted
schematically in Fig, 1. This concept is being proposed by TRW to provide
on-board navigation measurements on a spinning spacecraft. The concept is
for the sensor, as it sweeps a 3° field of view with each spacecraft rotation,
to observe stars (brighter than magnitude 4.0) and planetary satellites. The
sensor acquires satellite images when their visual magnitudes reach 4 and
tracking terminates when the target image exceeds 20 arc sec in the sensor
field of view. The sensor determines their cone and clock angles relative to
the spacecraft spin axis and some arbitrary celestial reference. These data
(radio and optical), combined with the equations of motion of the spacecraft
and the satellite motion about the primary, provide the capability for precise
planet-relative spacecraft navigation.

The satellite brightness acquisition and size termination tracking
constraints are indicated in Table 2. Figure 2 represents the spacecraft
viewing geometry at Saturn and Uranus at roughly 107 km from the planet's
center., The spacecraft cone and clock angles are indicated with 180° cone
being the negative Earth line (spin axis). Thus, as the spacecraft spins, the
3’ slit describes a celestial ring of constant cone angle, At Saturn, five
stars of magnitudes 4 or brighter and the natural satellites of Saturn can be

measured in 120° of clock angle rotation in a constant 3° cone angle swath
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between 144,5° and 147,5°. One of the available stars is Arcturus, At
Uranus a wider clock angle swath is required since the angle between the
negative Earth line and Uranus satellites is smaller than at Saturn, This
results in less sky being scanned at Uranus for a 27 sweep in clock angle.
However, it is seen that between cone angles of 164° and 167°, 10 stars of
at least magnitude 4 or brighter, plus Uranus satellites, are available for
optical measurements. A star plot was not included for Jupiter since ensuiny
results will discourage the V-slit sensor utilization for Jupiter flyby. The
conclusion is that there are sufficient stars within a 3° ficld of view of both
planets' satellites to feasibly implement the V-slit sensor scheme.

The direct Saturn mission was analyzed assuming radio-only navigation
whereas the Saturn/Uranus and Jupiter/Uranus mission assumed radio
coupled with optical navigation,

Maneuver Strategy

The midcourse velocity correction strategy employs a first correction
5 days after launch to correct the Saturn B-plane miss ellipse due to the
Titan IIIE/Centaur/TE-364-4 injection errors. At Earth plus 5 (I +5) days,
orbit determination errors are considered negligible in comparison to the
injection errors and are ignored, Atl+5 days it is also assumed that a
break in the pointing of the spacecraft high gain antenna from Earth lock is
tolerable for several minutes with the communications maintained with an
omni-antenna and the Pioneer is precessed to align its propulsion motor
along the desired velocity correction direction, This is the only time during
a mission in which the "full Pionecr precession" maneuver is permitted.
All subsequent maneuvers employ the "restricted direction™ maneuver
wherein the velocity correction is applied as two sequential maneuver
components, one component along the Earth vector and one component normal

to the Earth line,



The 1+5 day precession maneuver has resulting execution errors
which map to the first planet B-plane miss errors. These errors are
corrected by a second maneuver at 200 days before this planet's periapsis
(E -200). At E -5 days, sufficient information about the orbit determination
error at the E - 60 day epoch has been gained to make a third small correction
to arrive at the nominal aim point at periapsis. The 60 days before encounter
epoch is chosen since at this time sufficient radio tracking will have taken
place such that orbit determination errors will be fairly representative of
average errors along the entire tracking arc. Since this maneuver is quite
small {(x7 m/sec), the execution errors do not map in 5 days to significant
errors at periapsis and are hence ignored.

For the SU and JU missions, there still remains a small orbit determination
uncertainty at the intermediate planet's periapsis which is then mapped to a
large uncertainty at Uranus encounter. Thus, a fourth velocity correction is
performed at 50 days past the intermediate planet's periapsis (E +50) to
correct for these Uranus errors, The execution errors from this maneuver
are mapped to Uranus B-plane errors. A further velocity correction is
made to correct these errors and the resulting execution errors mapped to
Uranus B-plane errors ar_ considered acceptable to the mission objectives
of probe release and entry. At Uranus minus 120 days (U - 120) the approach
phase radio begins and at U - 24 days meaningful optical measurements can
be taken to establish the spacecraft orbit with respect to Uranus before the bus
is deflected from the planetary-aimed probe. Actually, a small velocity
correction to the bus/probe would be made before bus separation to correct
the orbit determination errors. The resulting execution errors of the bus
are then mapped to various epochs prior to and including probe atmospheric

entry., The bus errors are then mapped to bus periapsis as well, The mapping
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of the errors permits analysis of the entry condition errors which are
important to the communications, structural and science designs for the
probe.

Table 3 summarizes the multi-planet maneuver sequences after Ref, 4.
Analysis

Reference 5 documents in detail the mathematical derivations and
analyses performed in supporting the navigation and guidance results presented
below. In the limited space here, it suffices to state that observable clock
and cone angles of V-slit satellite and star measurements are related
geometrically to the spacecraft state vector, satellite orbital elements, and
the spacecraft spin axis orientation, Using the dynamics relating spacecraft
states at various times, a spacecraft covariance matrix at closest approach
to a planet can be computed by a recursive filtering approach equivalent to
that obtained by a linearized Kalman-type filter.

Midcourse velocity corrections are statistically derived by sampling
various velocity covariance matrices at maneuver epochs by Monte Carlo
sampling techniques. Drawn velocity vector samples from maneuver | are
processed by the standard Pioneer precession model software (ref, 6)
whereas subsequent epoch maneuver samples are processed by the restricted
direction model (ref, 5) to obtcin average execution errors which are in turn
mapped to B-plane dispersion ellipses, The restricted direction maneuver,
at long distances from Earth, avoids precessing of the spin axis and the
subsequent temporary loss of Earth communications due to the redirecting

of the Pioneer high-gain antenna,

i g et



pppen—-

Results
Navigation
1. Direct Saturn Mission. Unless specifically stated to the contrary,

all subsequent navigation and maneuver B-plane errors correspond to bus or
probe encounter (periapsis). Figure 3 displays the B-plane semi-major axis
for the bus/probe as a function of data arc for the case of conventional plus
differenced radio navigation, Here, unlike the conventional analysis, the
results are monotonically decreasing. This is most satisfying in that it
removes the implicit problem of "optimal data spans," which appears to
plague conventional results. It should also be mentioned that these results
are a significant improvement over the conventional data-only analysis,
especially when tight station location errors are assumed. In this particular
case, the longest (best) data arc yields errors of approximately 1500 km.
This implies that the dominant factors in the state errors {using the longest
data arc) are the ephemeris and mass errors of the planet. In other words,
to significantly reduce the state error below 1500 km would require a more
precise a priori knowledge of both the ephemeris and mass of Saturn.

2. Saturn/Uranus Mission, The Saturn and Uranus radio-only

results are shown in Fig, 4 for both "tight" and "loose" station location
error assumptions, The curves for Saturn indicate that the choice of the
initial data epoch has but a slight effect on the estimation accuracy, as has
the data termination time. The major effect upon estimation capability,
however, is due to the assumed level of station location errors; the results
using the "loose" assumption being roughly twice those of the "tight." Thus
it appears that lengthy tracking intervals, or extension of tracking close to
Saturn encounter, have little effec. in reducing estimation errors, whereas

improvement in station location errors can have highly beneficial results,
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It is obvious from the Uranus radio curves that the predominant
source of error is the ephemeris. The addition of data near encounter does
not affect the level of error at all. Even the change from ''loose' to "tight'
station location errors hardly improves the radio-only estimation capability
when the spacecraft is in the presence of such enormous ephemeris errors.

For the optical measurements and filtc at Saturn, initial estimates
of 162, 000 km for the spacecraft Z component and -959, 000 km/day for X
were assumed., The X axis is defined in the direction of the approach
velocity vector - the XY plane is the approach orbital plane. All other
spacecraft state components were taken as 0. Apriori standard deviations
of 106 km in components of spacecraft position and 10'4 km/~ay in velocity
components were assumed. An apriori satellite semimajor axis uncertainty
of 106 km was assumed as well as 1 rad for satellite inclination i and right
ascension of ascending node 1. A V-slit sensor bias of 0.95 mrad was
assumed. Random errors in the cone and clock angle observable are 0. 08
and 0.12 mrad respectively. Figure 5 shows the B-plane semimajor axis as a
function of the tracking arc for Saturn's satellites. Although Fig. 5 shows
the results assuming 24 optical measurements per day with the sensor bias
estimated, Ref. 5 parameterized the sample rate and '"considered' bias,
which result in the following conclusions:

1. Apparently, one complete orbit of data (independent of choice of
satellite) is required to achieve navigation accuracies of less than 3000 km.

2. The ultimate accuracy that can be attained for a given data arc
depends on the orbital period of the satellite. For thc same span of time,
it would be more desirable to view a satellite. such as Rhea, of shorter

period rather than a lo.iger-period satellite such as Titan,
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3. Considering the bias yields errors that are about 25% greater
than estimating the bias during the first few orbits of data. However, after
several orbits of data, there is only about 4% difference between these
cases.

4, The navigation accuracy apparently varies inversely with the
square root of the sampling rate.

The optical navigation problem for Uranus is considerably different
than that for Saturn, in terms of the number of orbits of data available and
the viewing geometry. Only the satellites Ariel, Titania, and OLeron are
examined for the Uranus approach. They have periods rangiag from 13.4
tc 2.5 days with the earliest acquisition occurring orily 25 days before
encounter. Since a probe is to be released no later than 14 days befcre
encounter, this implies that a maximum of 11 days of data is available,
regardless of which satellite is viewed.

The spacecraft motion was again assumed to be parallel to the X-Y
plane, however, the satellite orbits are in the Y-Z plane. The .aitial space-
craft Z component was assumed as 130, 000 km and the X component as
-1.19 X 106 km/day; all other components taken as 0. All satellite inclina-
tions i and right ascensions  were assumed to be 7/2. A priori standard
deviations of 30,000 km in position and 10.4 km/day in velocity were
assumed for the spacecraft. For the satellites, 10,000 km in semima jor
axis and 1 rad in i and Q2 were assumed. The a priori errors of the space-
craft state are the result of processing radio data from 120 days to 26 days
before encounter. The same sensor statistics and sampling rates are
assumed for the baseline mission as were used for the Saturn study.

Figure 6 presents the optical tracking results for the Uranus approach.

Reference 5 reveals that ''considering'' the bias yields B-plane errors that
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are about three times larger than when estimating the bias. Figure 6 is

the case when the spacecraft state, spin axis, and sensor bias are all esti-
mated. The sample rate is 4 per‘ day. When the bias is estimated, the error
varies in the expected l/‘/T\l_ manner (N being the sample rate). For the
considered case, however, the errors are relatively insensitive to sampling
rate. Increasing the sensor error by a factor of two results only in about

a 10% increase in the estimation error.

The optical navigation accuracies for the Uranus approach are
strongly affected by the relative viewing geometry. A major error source
is the inability to accurately determine the nodal angle of the satellite orbit.
For the Saturn approach geometry the error in the nodal estimate is about
0.48 X 10-2 rad, whereas for the Uranus case this error is about
0.2 X 10.l rad. However, even when considering the effects of bias errors,
navigation accuracies of less than 1500 km can be achieved as early as

19 days before encounter.

3. Jupiter/Uranus Mission. The Jupiter phase radio-only results

are shown in Fig. 7 for both "tight" and "loose" station location error
assumptions. Here, as in the Saturn phase of the Saturn/Uranus Mission
study, these different assumptions yield results that vary by almost a factor
of 2, Figure 7 also reveals the importance of data span. Significant
improvements are attained by using longer arcs if data terminate around
20 days prior to encounter, If, however, data are taken to within 6 days of
encounter, then the length of the arc is not very important. With the
assumption of "tight" station location errors, B-plane errors at Jupiter of
about 400 km appear achievable.

The B-plane errors for both the probe and the bus at Uranus as a
function of data arc are identical to those shown in Fig. 4 for the Saturn/

Uranus mission. Here, as in the Saturn/Uranus mission analysis, the
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results are independent of data arc and the level of station location error.
The major source of error in these results is, of course, the ephemeris

and mass error of Uranus.

The assumptions employed in the optical navigation during Jupiter
flyby are 5000 km spacecraft position component errors and 1 m/sec veloc-
ity component errors when tracking the Gallilean satellites and 3000 km and
0.1 m/sec when tracking Amalthea. The a priori error in semimajor axis
for all Jupiter satellites is taken to be 30,000 km; a 1 rad error is assumed
for i, Q, and ¢, (the argument of periapsis pla‘-‘ns satellite true anomaly). A
0.1 rad error is alloted to @ and § for estimating the right ascension and
declination of the spacecraft spin axis. The sensor clock and cone angle
biases are again taken to be 0.05 mrad. The same error values are taken
at Uranus except that spacecraft position component errors of 30,000 km
and velocity component errors of 1 m/sec are assumed. Random cone and
clock angle errors are again 0.08 and 0.12 mrad respectively.

Figure 8 presents the optical results for the Jupiter s. :llites tabu-
lated in Table 2, Only the most optimistic cases are shown in which the
spacecraft state, spin axis, and sensor bias are all estimated. All tracking
cases are based on four measurement samples per day.

From Fig. 8 it may be concluded that the Gallilean satellites
(Callisto, Ganymede, Europa, and Io) do not appear to be very good candi-
dates for V-slit optical orbit determinations. Because of their size, data
must terminate long before planetary encounter (at least with this particu-
lar sensor), and as a result insufficient state information is acquired. The

satellite Amalthea presents a somewhat better situation in that it has a short
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period and can be tracked virtually to encounter. The spread in the results
between the various cases examined, however, is quite large, ranging at
most from 230 to 1000 km in the most pessimistic case. The large size of
the latter case is due to the brevity of the data span. If a longer tracking
interval could be assumed, this error would significantly reduce.

As a result, it appears that V-slit sensor optical data in the Jupiter
phase does not particularly enhance state estimation over radio data alone.
If Amalthea could be tracked, which is somewhat questionable due to the
proximity of a very bright Jupiter, it appears to be the only satellite
examined which is capable, in the more optimistic cases, of providing
better state estimates than radio data alone.

The results obtained by tracking Uranus satellites Oberon, Titania,
and Ariel have been seen in Fig. 6. The trajectory approach conditions
between the Saturn/Uranus and Jupiter/Uranus missions do not differ signi-
ficantly enough to affect the optical navigation results after the filter has had
adequate time to reduce the conservatively large a priori errors. Here, as
shown in the Uranus phase of the SU mission, enormous gains in state esti-
mation can be achieved by using radio and optical data instead of radio data
alone.

B-plane errors on the order of 1000-1500 km appear easily achievable
regardless of which satellite is tracked, when data can be taken to E-!Zd
(the candidate separation time nearest to encounter).

Optical navigation using the satellite Titania was also investigated
with the sample rate varied for the case of estimating the states of the space-
craft, Titania, and spin axis orientation, and considering the bias. The
B-plane error with the full data arc appears to reduce in the I/Nmanner

as data sample rate is increased. As a result, fairly significant
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improvement in the radio plus optical orbit determination accuracies for all
satellites of Jupiter and Uranus can be effected if the concomitant penalty of
a higher sampling rate is acceptable.

Mzuoavers

Table 4 summarizes the velocity requirements for the three outer
pianet missions. The event numbers correspond to those of Table 3. For
the direct Saturn mission note that the Monte Carlo sampling spread
(var ance) about the mean for the components can, and sometimes do,
exceed the spread about the mean for the absolute value of the velocities.
For the Saturn/Uranus mission, the first value of each pair at velocity
corraction numbers 4 and 5 pertains to radio-only navigation at Saturn while
the second value pertains to the optical V-slit sensor. For the Jupiter/
Uranus mission, the triplet at velocity correction numbers 4 and 5 corre-

spond in order to radio "loose,"

radio "tight, " and optical "Amalthea" track-
irg at Jupiter. The velocity deflection maneuvers 6 are taken as the
maxima occurriug at 700 and 600 Uranus radii respectively for the S/U and
J/U missions.

It is interesting to note that all inree missions have similar velocity
requirements on the first leg-from Earth to the first encounter planet.
The direct Satu™n mission has a significantly less first velocity correction
of 75 m/sec - umpared to 80 m/sec for the multi-planet missions. The
higher /U and J/U corrections than the direct Saturn correction are due to
the ‘ntermediate planet aiming constraints for successful Uranus encounter.
‘_he second velocity correction for the Saturn/Uranus mission is three
times greater than the corresponding Jupiter/Uranus correction. This is

due to the correspondingly greater propagation time of the first maneuver

¢yacution errors of the S/U mission over the J/U mission.
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The execution errors of this second velocity correction (13.6, 14,0,
4.6 m/sec for the S, S/U, and J/U missions respectively) map to one-sigma
B-plane dispersion ellipses shown in Figures 9, 10 and 11. Note that,
except for the large 2500-km miss at Uranus for the radio "loose' tracking
about Saturn, all B-plane semimajor axes for the mapped second maneuver
execution errors are in the range from 150 to 1000 km, well below the a
priori spacecraft state vector errors assumed for the encounter navigation
filter. This maneuver error domination by the a priori navigation errors is
the factor which permits the navigation filter and the interplanetary maneuver
statistics to be separated in this analysis.

The dispersion ellipses at the first encounter planets are aligned
roughly in the ecliptic plane, whereas out-of-plane navigation errors during
first planet flyby navigation orient the Uranus ellipses essentially normal to
the ecliptic. The ore exception to this trend is Amalthea optical tracking at
Jupiter (Fig. 11) —the nearness of Amalthea to its primary apparently
reduces the out-of-plane effect and the Uranus B-plane ellipse is reoriented
to the ecliptic.

Table 4 reveals the advantage of optical tracking for multi-planet
missions involving Saturn as the first encounter planet. Optical tracking
improves the ephemeris and mass knowledge of Saturn; the corresponding
improvement in spacecraft navigation near Saturn reduces the post encounter
velocity correction by a factor of 6, from 139.3 m/sec for radio-only to
23.2 m/sec for radio plus optical. Note for Jupiter, whose mass and
ephemeris are fairly well known, there is no improvement with the optical
V-slit sensor; as a matter of fact, the optical measurements are sufficiently
crude relative to radio tracking and planetary knowledge that they actually

degrade the filter. Thus radio tracking-only with an assumed ''loose"
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station configuration requires a post-Jupiter correction (13.4 m/sec) or
6 m/sec less than that required using optical coupled with radio
(19.2 m/sec).

Table 4'also reveals the significant velocity correction (7 and
9.8 m/sec for the S/U and J/U missions respectively) necessary to retarget
the spacecraft to the nominal B-plane aim-point after sufficient orbit
determination knowledge is learned during the first planet approach. This
correction is necessary to insure nominal encounter at the next planet.

Conclusions

The radio navigation analyzed in the Saturn mission supports the
following two conclusions: (1) The addition of differenced data to conven-
tional data dramatically improves state estimation capability, from 3000 to
1500 km assuming ''tight'' stations for the Saturn mission. This improve-
ment is such, in the case of ''tight'' station locations, that for further gains
to be made, significant reductions in the level of the a priori errors in the
ephemeris and mass of Saturn must be effected. (2) Proper weighting of
the available data types must be made, in the presence of stochastic accelera-
tions, so as to extract the maximum amount of state information the data
types contain.

A total propulsion capability of 200 m/sec would suffice for mid-
course and separation velocity requirements for the direct Saturn mission.

In the Saturn approach phase of the Saturn/Uranus mission, radio data
alone appear able to meet certain mission constraints (B-plane semimajor
axis errors of 1000 km or less) if "tight' station location errors are pro-
vided. When optical data are coupled with radio data, however, navigation
accuracies for the Saturn approach phase on the order of 200 km can be

attained using one of several candidate satellites of Saturn. The main
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argument for the inclusion of optical data is the factor of six savings in the
Saturn-Uranus leg velocity requirements — from 140 m/sec with radio
'"loose' to 23.2 m/sec for radio coupled with optical V-slit measurements.
The radio-only navigation accuracy in the Uranus phase is completely
limited by the ephemeris errors of the planet, which are on the order of
10,000 km. Incorporating optical data at Uranus can provide navigation
errors of 1500 km for tracking up to 1000 Uranus radii (RU) (or encounter
E - 20 days) or 1000 km for tracking up to 700 RU (E - 14 days).

For the Jupiter phase of the Jupiter/Uranus mission, radio-only state
information can yield B-plane errors on the order of 400 to 800 km, depend-

ing on the level of station location error that is appropriate. The Uranus

phase radio-only errors are equivalent to those of the Saturn/Uranus mission.

The coupling of radio with optical data in the Jupiter phase does not appear
to significantly enhance orbit determination capability without resorting to
fairly high optical sampling rates. For a higher sampling rate, satellite
Europa appears to be a good candidate with which to obtain reduced state
errors. If the assumptions about the optical instrument are truly valid,
namely that assumed biases in cone and clock angles are actually biases
(not slowly drifting or oscillating parameters) and hence car be adequately
and properly included in the estimation, then satellite Amalthea appears to
provide excellent orbit errors (if of course it can be seen in such near
proximity to Jupiter) on the order of 220 to 350 km (these, however, are
with a data arc extending to within one day of encounter). In the Uranus
phase optical data, in addition to radio, significantly reduce state errors

to the level of 1000 to 1500 km.
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The direct Saturn mission is navigationally feasible using Earth-based
tracking. This mode of navigation suffices for the Jupiter flyby portion of
the Jupiter/Uranus mission if a reasonable propellant load is carried
(<225 m/sec including separation maneuver). An on-board optical system
with the characteristics and accuracy of the V-slit sensor is necessary for
probe entry into the atmosphere of Uranus on both the Saturn/Uranus and
Jupiter /Uranus missions. The optical sensor is also highly desirable during
the Saturn encounter of the former mission in the sense that a propellant
savings of roughly 132 m/sec can be effected thereby on the Saturn-Uranus
leg.
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Table 2, Satellites of Jupiter, Saturn, and Uranus

Period Acquisition distance
Satellite (days) Acquisition Termination (kam)
JUPITER
Callisto 16. 689 3-624 3-354 3.6 x 108
Ganymede 7.155 r-420% 3-39¢ 5.5 x 10
Europa 3.551 3-313¢ 7-239 4.2 x 10°
Io 1.769 3-3749 y-28% 5.0 x 108
Amalthea 0.498 3-104 7-14 8.5 x 10°
SATURN
Titan 15.9 s-1509 s-49¢ 5.0 x 107
Rhea 4.5 s-g24 s-149 8.0 x 10°
Dione 2.7 s-524 s-10% 6.4 X 107
Tethys 1.9 s-52¢4 s-163 6.5 % 107
Enceladus 1.37 s-409 s-54 3.8 x 107
Mimas 0.94 s-30% s-59 3.0 x 107
URANUS
Oberon 13.5 u-23.59 y-7¢ 2.8 x 107
Titania 8.7 u-25.04 u-8d 3.0 X 107
Ariel 2.5 v-23.59 u-s? 2.8 x 107

¥
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Table 3. Multi-Planet Mission

———— —

—_— ———

Event
Point Description Epoch
1 Earth launch I1+0days
2 lst velocity correction I +5 days
3 2nd velocity correction J,S - 200 days
4 3rd velocity correction J,S - 5days
5 Jupiter, Saturn periapsis J,S + 0 days
6 4th velocity correction J,S + 50 days
7 5th velocity correction U - 200 days
8 Bus separation maneuver U - 13.7, 19.6, 25.6 days (SU)
U -11.8, 15.7, 19.9, 23.6 days (JU)
9 Uranus periapsis U + 0 days
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